esp-hal/examples/src/bin/hello_rgb.rs
2024-08-27 11:53:55 +00:00

110 lines
3.4 KiB
Rust

//! RGB LED Demo
//!
//! This example drives an SK68XX RGB LED, which is connected to a pin on the
//! official DevKits.
//!
//! The demo will leverage the [`smart_leds`](https://crates.io/crates/smart-leds)
//! crate functionality to circle through the HSV hue color space (with
//! saturation and value both at 255). Additionally, we apply a gamma correction
//! and limit the brightness to 10 (out of 255).
//!
//! The following wiring is assumed for ESP32:
//! - LED => GPIO33
//! The following wiring is assumed for ESP32C3:
//! - LED => GPIO8
//! The following wiring is assumed for ESP32C6, ESP32H2:
//! - LED => GPIO8
//! The following wiring is assumed for ESP32S2:
//! - LED => GPIO18
//! The following wiring is assumed for ESP32S3:
//! - LED => GPIO48
//% CHIPS: esp32 esp32c3 esp32c6 esp32h2 esp32s2 esp32s3
#![no_std]
#![no_main]
use esp_backtrace as _;
use esp_hal::{
clock::ClockControl,
delay::Delay,
gpio::Io,
peripherals::Peripherals,
prelude::*,
rmt::Rmt,
system::SystemControl,
};
use esp_hal_smartled::{smartLedBuffer, SmartLedsAdapter};
use smart_leds::{
brightness,
gamma,
hsv::{hsv2rgb, Hsv},
SmartLedsWrite,
};
#[entry]
fn main() -> ! {
let peripherals = Peripherals::take();
let system = SystemControl::new(peripherals.SYSTEM);
let clocks = ClockControl::boot_defaults(system.clock_control).freeze();
let io = Io::new(peripherals.GPIO, peripherals.IO_MUX);
// Each devkit uses a unique GPIO for the RGB LED, so in order to support
// all chips we must unfortunately use `#[cfg]`s:
cfg_if::cfg_if! {
if #[cfg(feature = "esp32")] {
let led_pin = io.pins.gpio33;
} else if #[cfg(feature = "esp32c3")] {
let led_pin = io.pins.gpio8;
} else if #[cfg(any(feature = "esp32c6", feature = "esp32h2"))] {
let led_pin = io.pins.gpio8;
} else if #[cfg(feature = "esp32s2")] {
let led_pin = io.pins.gpio18;
} else if #[cfg(feature = "esp32s3")] {
let led_pin = io.pins.gpio48;
}
}
// Configure RMT peripheral globally
cfg_if::cfg_if! {
if #[cfg(feature = "esp32h2")] {
let freq = 32.MHz();
} else {
let freq = 80.MHz();
}
}
let rmt = Rmt::new(peripherals.RMT, freq, &clocks).unwrap();
// We use one of the RMT channels to instantiate a `SmartLedsAdapter` which can
// be used directly with all `smart_led` implementations
let rmt_buffer = smartLedBuffer!(1);
let mut led = SmartLedsAdapter::new(rmt.channel0, led_pin, rmt_buffer, &clocks);
let delay = Delay::new(&clocks);
let mut color = Hsv {
hue: 0,
sat: 255,
val: 255,
};
let mut data;
loop {
// Iterate over the rainbow!
for hue in 0..=255 {
color.hue = hue;
// Convert from the HSV color space (where we can easily transition from one
// color to the other) to the RGB color space that we can then send to the LED
data = [hsv2rgb(color)];
// When sending to the LED, we do a gamma correction first (see smart_leds
// documentation for details) and then limit the brightness to 10 out of 255 so
// that the output it's not too bright.
led.write(brightness(gamma(data.iter().cloned()), 10))
.unwrap();
delay.delay_millis(20);
}
}
}