led_client/rp-hal/on-target-tests/tests/dma_dyn.rs
2024-12-21 00:48:45 -05:00

206 lines
6.9 KiB
Rust

#![no_std]
#![no_main]
#![cfg(test)]
use crate::hal::dma::DynChannels;
use defmt_rtt as _; // defmt transport
use defmt_test as _;
use panic_probe as _;
use rp2040_hal as hal; // memory layout // panic handler
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
/// Note: This boot block is not necessary when using a rp-hal based BSP
/// as the BSPs already perform this step.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
struct State {
channels: DynChannels,
}
mod testdata {
#[allow(dead_code)]
pub const ARRAY_U8: [u8; 10] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
#[allow(dead_code)]
pub const ARRAY_U16: [u16; 10] = [270, 271, 272, 273, 274, 275, 276, 277, 278, 279];
#[allow(dead_code)]
pub const ARRAY_U32: [u32; 10] = [
65571, 65572, 65573, 65574, 65575, 65576, 65577, 65578, 65579, 65580,
];
#[allow(dead_code)]
pub const ARRAY_I8: [i8; 10] = [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10];
#[allow(dead_code)]
pub const ARRAY_I16: [i16; 10] = [-270, -271, -272, -273, -274, -275, -276, -277, -278, -279];
#[allow(dead_code)]
pub const ARRAY_I32: [i32; 10] = [
-65571, -65572, -65573, -65574, -65575, -65576, -65577, -65578, -65579, -65580,
];
}
#[defmt_test::tests]
mod tests {
use crate::testdata;
use crate::State;
use crate::XTAL_FREQ_HZ;
use defmt::assert_eq;
use defmt_rtt as _;
use panic_probe as _;
use rp2040_hal as hal;
use hal::{clocks::init_clocks_and_plls, pac, watchdog::Watchdog};
use rp2040_hal::dma::DMAExt;
#[init]
fn setup() -> State {
unsafe {
hal::sio::spinlock_reset();
}
let mut pac = pac::Peripherals::take().unwrap();
let _core = pac::CorePeripherals::take().unwrap();
let mut watchdog = Watchdog::new(pac.WATCHDOG);
let _clocks = init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
let dma = pac.DMA.dyn_split(&mut pac.RESETS);
State { channels: dma }
}
#[test]
fn dyn_m2m_u8(state: &mut State) {
let ch0 = state
.channels
.ch0
.take()
.expect("Could not take Dyn DMA channel");
let rx_buffer = cortex_m::singleton!(: [u8; 10] = [0; 10]).unwrap();
let tx_buffer = cortex_m::singleton!(: [u8; 10] = testdata::ARRAY_U8).unwrap();
let tx_transfer = hal::dma::single_buffer::Config::new(ch0, tx_buffer, rx_buffer);
let tx_started = tx_transfer.start();
let (newch0, tx_buffer, rx_buffer) = tx_started.wait();
let first = tx_buffer.iter();
let second = rx_buffer.iter();
for (x, y) in first.zip(second) {
assert_eq!(x, y);
}
state.channels.ch0.replace(newch0);
}
#[test]
fn dyn_m2m_u16(state: &mut State) {
let ch0 = state
.channels
.ch0
.take()
.expect("Could not take Dyn DMA channel");
let rx_buffer = cortex_m::singleton!(: [u16; 10] = [0; 10]).unwrap();
let tx_buffer = cortex_m::singleton!(: [u16; 10] = testdata::ARRAY_U16).unwrap();
let tx_transfer = hal::dma::single_buffer::Config::new(ch0, tx_buffer, rx_buffer);
let tx_started = tx_transfer.start();
let (newch0, tx_buffer, rx_buffer) = tx_started.wait();
let first = tx_buffer.iter();
let second = rx_buffer.iter();
for (x, y) in first.zip(second) {
assert_eq!(x, y);
}
state.channels.ch0.replace(newch0);
}
#[test]
fn dyn_m2m_u32(state: &mut State) {
let ch0 = state
.channels
.ch0
.take()
.expect("Could not take Dyn DMA channel");
let rx_buffer = cortex_m::singleton!(: [u32; 10] = [0; 10]).unwrap();
let tx_buffer = cortex_m::singleton!(: [u32; 10] = testdata::ARRAY_U32).unwrap();
let tx_transfer = hal::dma::single_buffer::Config::new(ch0, tx_buffer, rx_buffer);
let tx_started = tx_transfer.start();
let (newch0, tx_buffer, rx_buffer) = tx_started.wait();
let first = tx_buffer.iter();
let second = rx_buffer.iter();
for (x, y) in first.zip(second) {
assert_eq!(x, y);
}
state.channels.ch0.replace(newch0);
}
#[test]
fn dyn_m2m_i8(state: &mut State) {
let ch0 = state
.channels
.ch0
.take()
.expect("Could not take Dyn DMA channel");
let rx_buffer = cortex_m::singleton!(: [i8; 10] = [0; 10]).unwrap();
let tx_buffer = cortex_m::singleton!(: [i8; 10] = testdata::ARRAY_I8).unwrap();
let tx_transfer = hal::dma::single_buffer::Config::new(ch0, tx_buffer, rx_buffer);
let tx_started = tx_transfer.start();
let (newch0, tx_buffer, rx_buffer) = tx_started.wait();
let first = tx_buffer.iter();
let second = rx_buffer.iter();
for (x, y) in first.zip(second) {
assert_eq!(x, y);
}
state.channels.ch0.replace(newch0);
}
#[test]
fn dyn_m2m_i16(state: &mut State) {
let ch0 = state
.channels
.ch0
.take()
.expect("Could not take Dyn DMA channel");
let rx_buffer = cortex_m::singleton!(: [i16; 10] = [0; 10]).unwrap();
let tx_buffer = cortex_m::singleton!(: [i16; 10] = testdata::ARRAY_I16).unwrap();
let tx_transfer = hal::dma::single_buffer::Config::new(ch0, tx_buffer, rx_buffer);
let tx_started = tx_transfer.start();
let (newch0, tx_buffer, rx_buffer) = tx_started.wait();
let first = tx_buffer.iter();
let second = rx_buffer.iter();
for (x, y) in first.zip(second) {
assert_eq!(x, y);
}
state.channels.ch0.replace(newch0);
}
#[test]
fn dyn_m2m_i32(state: &mut State) {
let ch0 = state
.channels
.ch0
.take()
.expect("Could not take Dyn DMA channel");
let rx_buffer = cortex_m::singleton!(: [i32; 10] = [0; 10]).unwrap();
let tx_buffer = cortex_m::singleton!(: [i32; 10] = testdata::ARRAY_I32).unwrap();
let tx_transfer = hal::dma::single_buffer::Config::new(ch0, tx_buffer, rx_buffer);
let tx_started = tx_transfer.start();
let (newch0, tx_buffer, rx_buffer) = tx_started.wait();
let first = tx_buffer.iter();
let second = rx_buffer.iter();
for (x, y) in first.zip(second) {
assert_eq!(x, y);
}
state.channels.ch0.replace(newch0);
}
}