esp-hal/esp-hal-common/src/lib.rs
2022-10-27 12:08:23 -07:00

233 lines
6.9 KiB
Rust

//! `no_std` HAL implementations for the peripherals which are common among
//! Espressif devices. Implements a number of the traits defined by
//! [embedded-hal].
//!
//! This crate should not be used directly; you should use one of the
//! device-specific HAL crates instead:
//!
//! - [esp32-hal]
//! - [esp32c2-hal]
//! - [esp32c3-hal]
//! - [esp32s2-hal]
//! - [esp32s3-hal]
//!
//! [embedded-hal]: https://docs.rs/embedded-hal/latest/embedded_hal/
//! [esp32-hal]: https://github.com/esp-rs/esp-hal/tree/main/esp32-hal
//! [esp32c2-hal]: https://github.com/esp-rs/esp-hal/tree/main/esp32c2-hal
//! [esp32c3-hal]: https://github.com/esp-rs/esp-hal/tree/main/esp32c3-hal
//! [esp32s2-hal]: https://github.com/esp-rs/esp-hal/tree/main/esp32s2-hal
//! [esp32s3-hal]: https://github.com/esp-rs/esp-hal/tree/main/esp32s3-hal
#![no_std]
#![cfg_attr(xtensa, feature(asm_experimental_arch))]
#[cfg(esp32)]
pub use esp32 as pac;
#[cfg(esp32c2)]
pub use esp32c2 as pac;
#[cfg(esp32c3)]
pub use esp32c3 as pac;
#[cfg(esp32s2)]
pub use esp32s2 as pac;
#[cfg(esp32s3)]
pub use esp32s3 as pac;
pub use procmacros as macros;
#[cfg(not(esp32c2))]
pub use self::pulse_control::PulseControl;
#[cfg(has_usb_serial_jtag)]
pub use self::usb_serial_jtag::UsbSerialJtag;
pub use self::{
delay::Delay,
gpio::*,
interrupt::*,
rng::Rng,
rtc_cntl::{Rtc, Rwdt},
serial::Serial,
spi::Spi,
timer::Timer,
};
pub mod analog;
pub mod clock;
pub mod delay;
pub mod dma;
pub mod gpio;
pub mod i2c;
// FIXME: While the ESP32-C2 *does* have LEDC, it is not currently available in
// the SVD.
#[cfg(not(esp32c2))]
pub mod ledc;
pub mod prelude;
#[cfg(not(esp32c2))]
pub mod pulse_control;
pub mod rng;
pub mod rom;
pub mod rtc_cntl;
pub mod serial;
pub mod spi;
pub mod system;
#[cfg(has_systimer)]
pub mod systimer;
pub mod timer;
#[cfg(has_usb_serial_jtag)]
pub mod usb_serial_jtag;
#[cfg(not(esp32c2))]
pub mod utils;
#[cfg_attr(esp32, path = "cpu_control/esp32.rs")]
#[cfg_attr(any(esp32c2, esp32c3, esp32s2), path = "cpu_control/none.rs")]
#[cfg_attr(esp32s3, path = "cpu_control/esp32s3.rs")]
pub mod cpu_control;
#[cfg_attr(esp32, path = "efuse/esp32.rs")]
#[cfg_attr(esp32c2, path = "efuse/esp32c2.rs")]
#[cfg_attr(esp32c3, path = "efuse/esp32c3.rs")]
#[cfg_attr(esp32s2, path = "efuse/esp32s2.rs")]
#[cfg_attr(esp32s3, path = "efuse/esp32s3.rs")]
pub mod efuse;
#[cfg_attr(riscv, path = "interrupt/riscv.rs")]
#[cfg_attr(xtensa, path = "interrupt/xtensa.rs")]
pub mod interrupt;
/// Enumeration of CPU cores
/// The actual number of available cores depends on the target.
pub enum Cpu {
/// The first core
ProCpu = 0,
/// The second core
AppCpu,
}
pub fn get_core() -> Cpu {
#[cfg(all(xtensa, multi_core))]
match ((xtensa_lx::get_processor_id() >> 13) & 1) != 0 {
false => Cpu::ProCpu,
true => Cpu::AppCpu,
}
// #[cfg(all(riscv, multi_core))]
// TODO get hart_id
// single core always has ProCpu only
#[cfg(single_core)]
Cpu::ProCpu
}
mod critical_section_impl {
struct CriticalSection;
critical_section::set_impl!(CriticalSection);
#[cfg(xtensa)]
mod xtensa {
unsafe impl critical_section::Impl for super::CriticalSection {
unsafe fn acquire() -> critical_section::RawRestoreState {
let tkn: critical_section::RawRestoreState;
core::arch::asm!("rsil {0}, 15", out(reg) tkn);
#[cfg(multi_core)]
{
let guard = super::multicore::MULTICORE_LOCK.lock();
core::mem::forget(guard); // forget it so drop doesn't run
}
tkn
}
unsafe fn release(token: critical_section::RawRestoreState) {
if token != 0 {
#[cfg(multi_core)]
{
debug_assert!(super::multicore::MULTICORE_LOCK.is_owned_by_current_thread());
// safety: we logically own the mutex from acquire()
super::multicore::MULTICORE_LOCK.force_unlock();
}
core::arch::asm!(
"wsr.ps {0}",
"rsync", in(reg) token)
}
}
}
}
#[cfg(riscv)]
mod riscv {
unsafe impl critical_section::Impl for super::CriticalSection {
unsafe fn acquire() -> critical_section::RawRestoreState {
let mut mstatus = 0u32;
core::arch::asm!("csrrci {0}, mstatus, 8", inout(reg) mstatus);
let interrupts_active = (mstatus & 0b1000) != 0;
#[cfg(multi_core)]
{
let guard = multicore::MULTICORE_LOCK.lock();
core::mem::forget(guard); // forget it so drop doesn't run
}
interrupts_active as _
}
unsafe fn release(token: critical_section::RawRestoreState) {
if token != 0 {
#[cfg(multi_core)]
{
debug_assert!(multicore::MULTICORE_LOCK.is_owned_by_current_thread());
// safety: we logically own the mutex from acquire()
multicore::MULTICORE_LOCK.force_unlock();
}
riscv::interrupt::enable();
}
}
}
}
#[cfg(multi_core)]
mod multicore {
use core::sync::atomic::{AtomicBool, Ordering};
use lock_api::{GetThreadId, GuardSend, RawMutex};
use crate::get_core;
/// Reentrant Mutex
///
/// Currently implemented using an atomic spin lock.
/// In the future we can optimize this raw mutex to use some hardware
/// features.
pub(crate) static MULTICORE_LOCK: lock_api::ReentrantMutex<RawSpinlock, RawThreadId, ()> =
lock_api::ReentrantMutex::const_new(RawSpinlock::INIT, RawThreadId::INIT, ());
pub(crate) struct RawThreadId;
unsafe impl lock_api::GetThreadId for RawThreadId {
const INIT: Self = RawThreadId;
fn nonzero_thread_id(&self) -> core::num::NonZeroUsize {
core::num::NonZeroUsize::new((get_core() as usize) + 1).unwrap()
}
}
pub(crate) struct RawSpinlock(AtomicBool);
unsafe impl lock_api::RawMutex for RawSpinlock {
const INIT: RawSpinlock = RawSpinlock(AtomicBool::new(false));
// A spinlock guard can be sent to another thread and unlocked there
type GuardMarker = GuardSend;
fn lock(&self) {
while !self.try_lock() {}
}
fn try_lock(&self) -> bool {
self.0
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
}
unsafe fn unlock(&self) {
self.0.store(false, Ordering::Release);
}
}
}
}