esp-hal/esp-hal-common/src/i2s.rs
Scott Mabin 452fde2c12
Peripheral ref/gpio (#323)
* Implement Peripheral for all GPIO pins

* Update i2c & i2s to use the new gpio peripherals ref

* gpio pref: usb

* gpio pref: pulse control (RMT)

* gpio pref: spi

* gpio pref: uart

* gpio pref: ledc

* gpio pref: mcpwm

* fixup smartleds to use new pulse controller traits

* dump msrv

* bump rust-version in cargo tomls
2022-12-19 14:40:29 +00:00

1921 lines
52 KiB
Rust

//! I2S Master
use embedded_dma::{ReadBuffer, WriteBuffer};
use private::*;
#[cfg(any(esp32s3))]
use crate::dma::private::I2s1Peripheral;
use crate::{
clock::Clocks,
dma::{
private::{I2s0Peripheral, I2sPeripheral, Rx, Tx},
Channel,
DmaError,
DmaTransfer,
},
peripheral::{Peripheral, PeripheralRef},
system::PeripheralClockControl,
InputPin,
OutputPin,
};
#[cfg(any(esp32, esp32s2, esp32s3))]
const I2S_LL_MCLK_DIVIDER_BIT_WIDTH: usize = 6;
#[cfg(any(esp32c3))]
const I2S_LL_MCLK_DIVIDER_BIT_WIDTH: usize = 9;
const I2S_LL_MCLK_DIVIDER_MAX: usize = (1 << I2S_LL_MCLK_DIVIDER_BIT_WIDTH) - 1;
trait AcceptedWord {}
impl AcceptedWord for u8 {}
impl AcceptedWord for u16 {}
impl AcceptedWord for u32 {}
impl AcceptedWord for i8 {}
impl AcceptedWord for i16 {}
impl AcceptedWord for i32 {}
/// I2S Error
#[derive(Debug, Clone, Copy)]
pub enum Error {
Unknown,
DmaError(DmaError),
IllegalArgument,
}
impl From<DmaError> for Error {
fn from(value: DmaError) -> Self {
Error::DmaError(value)
}
}
/// Supported standards.
pub enum Standard {
Philips,
// Tdm,
// Pdm,
}
/// Supported data formats
#[cfg(not(any(esp32, esp32s2)))]
pub enum DataFormat {
Data32Channel32,
Data32Channel24,
Data32Channel16,
Data32Channel8,
Data16Channel16,
Data16Channel8,
Data8Channel8,
}
/// Supported data formats
#[cfg(any(esp32, esp32s2))]
pub enum DataFormat {
Data32Channel32,
Data16Channel16,
}
#[cfg(not(any(esp32, esp32s2)))]
impl DataFormat {
pub fn data_bits(&self) -> u8 {
match self {
DataFormat::Data32Channel32 => 32,
DataFormat::Data32Channel24 => 32,
DataFormat::Data32Channel16 => 32,
DataFormat::Data32Channel8 => 32,
DataFormat::Data16Channel16 => 16,
DataFormat::Data16Channel8 => 16,
DataFormat::Data8Channel8 => 8,
}
}
pub fn channel_bits(&self) -> u8 {
match self {
DataFormat::Data32Channel32 => 32,
DataFormat::Data32Channel24 => 24,
DataFormat::Data32Channel16 => 16,
DataFormat::Data32Channel8 => 8,
DataFormat::Data16Channel16 => 16,
DataFormat::Data16Channel8 => 8,
DataFormat::Data8Channel8 => 8,
}
}
}
#[cfg(any(esp32, esp32s2))]
impl DataFormat {
pub fn data_bits(&self) -> u8 {
match self {
DataFormat::Data32Channel32 => 32,
DataFormat::Data16Channel16 => 16,
}
}
pub fn channel_bits(&self) -> u8 {
match self {
DataFormat::Data32Channel32 => 32,
DataFormat::Data16Channel16 => 16,
}
}
}
/// Pins to use for I2S tx
pub struct PinsBclkWsDout<'d, B, W, DO> {
bclk: PeripheralRef<'d, B>,
ws: PeripheralRef<'d, W>,
dout: PeripheralRef<'d, DO>,
}
impl<'d, B, W, DO> PinsBclkWsDout<'d, B, W, DO>
where
B: OutputPin,
W: OutputPin,
DO: OutputPin,
{
pub fn new(
bclk: impl Peripheral<P = B> + 'd,
ws: impl Peripheral<P = W> + 'd,
dout: impl Peripheral<P = DO> + 'd,
) -> Self {
crate::into_ref!(bclk, ws, dout);
Self { bclk, ws, dout }
}
}
impl<'d, B, W, DO> I2sTxPins for PinsBclkWsDout<'d, B, W, DO>
where
B: OutputPin,
W: OutputPin,
DO: OutputPin,
{
fn configure<I>(&mut self, instance: &mut I)
where
I: RegisterAccess,
{
self.bclk
.set_to_push_pull_output()
.connect_peripheral_to_output(instance.bclk_signal());
self.ws
.set_to_push_pull_output()
.connect_peripheral_to_output(instance.ws_signal());
self.dout
.set_to_push_pull_output()
.connect_peripheral_to_output(instance.dout_signal());
}
}
/// Pins to use for I2S rx
pub struct PinsBclkWsDin<'d, B, W, DI> {
bclk: PeripheralRef<'d, B>,
ws: PeripheralRef<'d, W>,
din: PeripheralRef<'d, DI>,
}
impl<'d, B, W, DI> PinsBclkWsDin<'d, B, W, DI>
where
B: OutputPin,
W: OutputPin,
DI: InputPin,
{
pub fn new(
bclk: impl Peripheral<P = B> + 'd,
ws: impl Peripheral<P = W> + 'd,
din: impl Peripheral<P = DI> + 'd,
) -> Self {
crate::into_ref!(bclk, ws, din);
Self { bclk, ws, din }
}
}
impl<'d, B, W, DI> I2sRxPins for PinsBclkWsDin<'d, B, W, DI>
where
B: OutputPin,
W: OutputPin,
DI: InputPin,
{
fn configure<I>(&mut self, instance: &mut I)
where
I: RegisterAccess,
{
self.bclk
.set_to_push_pull_output()
.connect_peripheral_to_output(instance.bclk_rx_signal());
self.ws
.set_to_push_pull_output()
.connect_peripheral_to_output(instance.ws_rx_signal());
self.din
.set_to_input()
.connect_input_to_peripheral(instance.din_signal());
}
}
/// MCLK pin to use
#[cfg(not(esp32))]
pub struct MclkPin<'d, M: OutputPin> {
mclk: PeripheralRef<'d, M>,
}
#[cfg(not(esp32))]
impl<'d, M: OutputPin> MclkPin<'d, M> {
pub fn new(pin: impl Peripheral<P = M> + 'd) -> Self {
Self {
mclk: pin.into_ref(),
}
}
}
#[cfg(not(esp32))]
impl<'d, M> I2sMclkPin for MclkPin<'d, M>
where
M: OutputPin,
{
fn configure<I>(&mut self, instance: &mut I)
where
I: RegisterAccess,
{
self.mclk
.set_to_push_pull_output()
.connect_peripheral_to_output(instance.mclk_signal());
}
}
/// No MCLK pin
pub struct NoMclk {}
impl I2sMclkPin for NoMclk {
fn configure<I>(&mut self, _instance: &mut I)
where
I: RegisterAccess,
{
// nothing to do
}
}
/// An in-progress DMA write transfer.
pub struct I2sWriteDmaTransfer<T, P, TX, BUFFER>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
{
i2s_tx: I2sTx<T, P, TX>,
buffer: BUFFER,
}
impl<'d, T, P, TX, BUFFER> I2sWriteDmaTransfer<T, P, TX, BUFFER>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
{
/// Amount of bytes which can be pushed.
/// Only useful for circular DMA transfers
pub fn available(&mut self) -> usize {
self.i2s_tx.tx_channel.available()
}
/// Push bytes into the DMA buffer.
/// Only useful for circular DMA transfers
pub fn push(&mut self, data: &[u8]) -> Result<usize, Error> {
Ok(self.i2s_tx.tx_channel.push(data)?)
}
}
impl<'d, T, P, TX, BUFFER> DmaTransfer<BUFFER, I2sTx<T, P, TX>>
for I2sWriteDmaTransfer<T, P, TX, BUFFER>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
{
/// Wait for the DMA transfer to complete and return the buffers and the
/// I2sTx instance.
fn wait(self) -> (BUFFER, I2sTx<T, P, TX>) {
self.i2s_tx.wait_tx_dma_done().ok(); // waiting for the DMA transfer is not enough
// `DmaTransfer` needs to have a `Drop` implementation, because we accept
// managed buffers that can free their memory on drop. Because of that
// we can't move out of the `DmaTransfer`'s fields, so we use `ptr::read`
// and `mem::forget`.
//
// NOTE(unsafe) There is no panic branch between getting the resources
// and forgetting `self`.
unsafe {
let buffer = core::ptr::read(&self.buffer);
let payload = core::ptr::read(&self.i2s_tx);
core::mem::forget(self);
(buffer, payload)
}
}
}
impl<'d, T, P, TX, BUFFER> Drop for I2sWriteDmaTransfer<T, P, TX, BUFFER>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
{
fn drop(&mut self) {
self.i2s_tx.wait_tx_dma_done().ok();
}
}
/// Blocking I2s Write
pub trait I2sWrite<W> {
fn write(&mut self, words: &[W]) -> Result<(), Error>;
}
/// Initiate a DMA tx transfer
pub trait I2sWriteDma<'d, T, P, TX, TXBUF>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
{
/// Write I2S.
/// Returns [I2sWriteDmaTransfer] which represents the in-ptrogress DMA
/// transfer
fn write_dma(self, words: TXBUF) -> Result<I2sWriteDmaTransfer<T, P, TX, TXBUF>, Error>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
TXBUF: ReadBuffer<Word = u8>;
/// Continously write to I2S. Returns [I2sWriteDmaTransfer] which represents
/// the in-ptrogress DMA transfer
fn write_dma_circular(
self,
words: TXBUF,
) -> Result<I2sWriteDmaTransfer<T, P, TX, TXBUF>, Error>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
TXBUF: ReadBuffer<Word = u8>;
}
/// An in-progress DMA read transfer.
pub struct I2sReadDmaTransfer<T, P, RX, BUFFER>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
{
i2s_rx: I2sRx<T, P, RX>,
buffer: BUFFER,
}
impl<'d, T, P, RX, BUFFER> I2sReadDmaTransfer<T, P, RX, BUFFER>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
{
/// Amount of bytes which can be poped
pub fn available(&mut self) -> usize {
self.i2s_rx.rx_channel.available()
}
pub fn pop(&mut self, data: &mut [u8]) -> Result<usize, Error> {
Ok(self.i2s_rx.rx_channel.pop(data)?)
}
/// Wait for the DMA transfer to complete and return the buffers and the
/// I2sTx instance after copying the read data to the given buffer.
/// Length of the received data is returned at the third element of the
/// tuple.
pub fn wait_receive(mut self, dst: &mut [u8]) -> (BUFFER, I2sRx<T, P, RX>, usize) {
self.i2s_rx.wait_rx_dma_done().ok(); // waiting for the DMA transfer is not enough
let len = self.i2s_rx.rx_channel.drain_buffer(dst).unwrap();
// `DmaTransfer` needs to have a `Drop` implementation, because we accept
// managed buffers that can free their memory on drop. Because of that
// we can't move out of the `DmaTransfer`'s fields, so we use `ptr::read`
// and `mem::forget`.
//
// NOTE(unsafe) There is no panic branch between getting the resources
// and forgetting `self`.
unsafe {
let buffer = core::ptr::read(&self.buffer);
let payload = core::ptr::read(&self.i2s_rx);
core::mem::forget(self);
(buffer, payload, len)
}
}
}
impl<'d, T, P, RX, BUFFER> DmaTransfer<BUFFER, I2sRx<T, P, RX>>
for I2sReadDmaTransfer<T, P, RX, BUFFER>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
{
/// Wait for the DMA transfer to complete and return the buffers and the
/// I2sTx instance.
fn wait(self) -> (BUFFER, I2sRx<T, P, RX>) {
self.i2s_rx.wait_rx_dma_done().ok(); // waiting for the DMA transfer is not enough
// `DmaTransfer` needs to have a `Drop` implementation, because we accept
// managed buffers that can free their memory on drop. Because of that
// we can't move out of the `DmaTransfer`'s fields, so we use `ptr::read`
// and `mem::forget`.
//
// NOTE(unsafe) There is no panic branch between getting the resources
// and forgetting `self`.
unsafe {
let buffer = core::ptr::read(&self.buffer);
let payload = core::ptr::read(&self.i2s_rx);
core::mem::forget(self);
(buffer, payload)
}
}
}
impl<T, P, RX, BUFFER> Drop for I2sReadDmaTransfer<T, P, RX, BUFFER>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
{
fn drop(&mut self) {
self.i2s_rx.wait_rx_dma_done().ok();
}
}
/// Blocking I2S Read
pub trait I2sRead<W> {
fn read(&mut self, words: &mut [W]) -> Result<(), Error>;
}
/// Initate a DMA rx transfer
pub trait I2sReadDma<'d, T, P, RX, RXBUF>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
{
/// Read I2S.
/// Returns [I2sReadDmaTransfer] which represents the in-ptrogress DMA
/// transfer
fn read_dma(self, words: RXBUF) -> Result<I2sReadDmaTransfer<T, P, RX, RXBUF>, Error>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
RXBUF: WriteBuffer<Word = u8>;
/// Continously read from I2S.
/// Returns [I2sReadDmaTransfer] which represents the in-ptrogress DMA
/// transfer
fn read_dma_circular(self, words: RXBUF) -> Result<I2sReadDmaTransfer<T, P, RX, RXBUF>, Error>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
RXBUF: WriteBuffer<Word = u8>;
}
/// Instance of the I2S peripheral driver
pub struct I2s<'d, I, T, P, TX, RX>
where
I: Instance<T>,
T: RegisterAccess + Clone,
P: I2sMclkPin,
TX: Tx,
RX: Rx,
{
_peripheral: PeripheralRef<'d, I>,
_register_access: T,
_pins: P,
pub i2s_tx: TxCreator<T, TX>,
pub i2s_rx: RxCreator<T, RX>,
}
impl<'d, I, T, P, TX, RX> I2s<'d, I, T, P, TX, RX>
where
I: Instance<T>,
T: RegisterAccess + Clone,
P: I2sMclkPin,
TX: Tx,
RX: Rx,
{
fn new_internal<IP>(
i2s: impl Peripheral<P = I> + 'd,
mut pins: P,
standard: Standard,
data_format: DataFormat,
sample_rate: impl Into<fugit::HertzU32>,
mut channel: Channel<TX, RX, IP>,
peripheral_clock_control: &mut PeripheralClockControl,
clocks: &Clocks,
) -> Self
where
IP: I2sPeripheral,
{
// on ESP32-C3 / ESP32-S3 and later RX and TX are independent and
// could be configured totally independently but for now handle all
// the targets the same and force same configuration for both, TX and RX
crate::into_ref!(i2s);
let mut register_access = i2s.register_access();
channel.tx.init_channel();
peripheral_clock_control.enable(register_access.get_peripheral());
pins.configure(&mut register_access);
register_access.set_clock(calculate_clock(
sample_rate,
2,
data_format.channel_bits(),
clocks,
));
register_access.configure(&standard, &data_format);
register_access.set_master();
register_access.update();
Self {
_peripheral: i2s,
_register_access: register_access.clone(),
_pins: pins,
i2s_tx: TxCreator {
register_access: register_access.clone(),
tx_channel: channel.tx,
},
i2s_rx: RxCreator {
register_access,
rx_channel: channel.rx,
},
}
}
}
/// Construct a new I2S peripheral driver instance for the first I2S peripheral
pub trait I2s0New<'d, I, T, P, TX, RX, IP>
where
I: Instance<T>,
T: RegisterAccess + Clone,
P: I2sMclkPin,
TX: Tx,
RX: Rx,
IP: I2sPeripheral + I2s0Peripheral,
RX: Rx,
{
fn new(
i2s: impl Peripheral<P = I> + 'd,
pins: P,
standard: Standard,
data_format: DataFormat,
sample_rate: impl Into<fugit::HertzU32>,
channel: Channel<TX, RX, IP>,
peripheral_clock_control: &mut PeripheralClockControl,
clocks: &Clocks,
) -> Self;
}
impl<'d, I, T, P, TX, RX, IP> I2s0New<'d, I, T, P, TX, RX, IP> for I2s<'d, I, T, P, TX, RX>
where
I: Instance<T> + I2s0Instance,
T: RegisterAccess + Clone,
P: I2sMclkPin,
TX: Tx,
RX: Rx,
IP: I2sPeripheral + I2s0Peripheral,
{
fn new(
i2s: impl Peripheral<P = I> + 'd,
pins: P,
standard: Standard,
data_format: DataFormat,
sample_rate: impl Into<fugit::HertzU32>,
channel: Channel<TX, RX, IP>,
peripheral_clock_control: &mut PeripheralClockControl,
clocks: &Clocks,
) -> Self {
Self::new_internal(
i2s,
pins,
standard,
data_format,
sample_rate,
channel,
peripheral_clock_control,
clocks,
)
}
}
/// Construct a new I2S peripheral driver instance for the second I2S peripheral
#[cfg(any(esp32s3))]
pub trait I2s1New<'d, I, T, P, TX, RX, IP>
where
I: Instance<T>,
T: RegisterAccess + Clone,
P: I2sMclkPin,
TX: Tx,
RX: Rx,
IP: I2sPeripheral + I2s1Peripheral,
RX: Rx,
{
fn new(
i2s: impl Peripheral<P = I> + 'd,
pins: P,
standard: Standard,
data_format: DataFormat,
sample_rate: impl Into<fugit::HertzU32>,
channel: Channel<TX, RX, IP>,
peripheral_clock_control: &mut PeripheralClockControl,
clocks: &Clocks,
) -> Self;
}
#[cfg(any(esp32s3))]
impl<'d, I, T, P, TX, RX, IP> I2s1New<'d, I, T, P, TX, RX, IP> for I2s<'d, I, T, P, TX, RX>
where
I: Instance<T> + I2s1Instance,
T: RegisterAccess + Clone,
P: I2sMclkPin,
TX: Tx,
RX: Rx,
IP: I2sPeripheral + I2s1Peripheral,
{
fn new(
i2s: impl Peripheral<P = I> + 'd,
pins: P,
standard: Standard,
data_format: DataFormat,
sample_rate: impl Into<fugit::HertzU32>,
channel: Channel<TX, RX, IP>,
peripheral_clock_control: &mut PeripheralClockControl,
clocks: &Clocks,
) -> Self {
Self::new_internal(
i2s,
pins,
standard,
data_format,
sample_rate,
channel,
peripheral_clock_control,
clocks,
)
}
}
/// I2S TX channel
pub struct I2sTx<T, P, TX>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
{
register_access: T,
_pins: P,
tx_channel: TX,
}
impl<T, P, TX> I2sTx<T, P, TX>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
{
fn new(mut register_access: T, mut pins: P, tx_channel: TX) -> Self {
pins.configure(&mut register_access);
Self {
register_access,
_pins: pins,
tx_channel,
}
}
fn write_bytes(&mut self, data: &[u8]) -> Result<(), Error> {
let ptr = data as *const _ as *const u8;
// Reset TX unit and TX FIFO
self.register_access.reset_tx();
// Enable corresponding interrupts if needed
// configure DMA outlink
self.tx_channel.prepare_transfer(
self.register_access.get_dma_peripheral(),
false,
ptr,
data.len(),
)?;
// set I2S_TX_STOP_EN if needed
// start: set I2S_TX_START
self.register_access.tx_start();
// wait until I2S_TX_IDLE is 1
self.register_access.wait_for_tx_done();
Ok(())
}
fn start_tx_transfer<TXBUF>(
mut self,
words: TXBUF,
circular: bool,
) -> Result<I2sWriteDmaTransfer<T, P, TX, TXBUF>, Error>
where
TXBUF: ReadBuffer<Word = u8>,
{
let (ptr, len) = unsafe { words.read_buffer() };
// Reset TX unit and TX FIFO
self.register_access.reset_tx();
// Enable corresponding interrupts if needed
// configure DMA outlink
self.tx_channel.prepare_transfer(
self.register_access.get_dma_peripheral(),
circular,
ptr,
len,
)?;
// set I2S_TX_STOP_EN if needed
// start: set I2S_TX_START
self.register_access.tx_start();
Ok(I2sWriteDmaTransfer {
i2s_tx: self,
buffer: words,
})
}
fn wait_tx_dma_done(&self) -> Result<(), Error> {
// wait until I2S_TX_IDLE is 1
self.register_access.wait_for_tx_done();
Ok(())
}
}
impl<T, P, TX, W> I2sWrite<W> for I2sTx<T, P, TX>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
W: AcceptedWord,
{
fn write(&mut self, words: &[W]) -> Result<(), Error> {
self.write_bytes(unsafe {
core::slice::from_raw_parts(
words as *const _ as *const u8,
words.len() * core::mem::size_of::<W>(),
)
})
}
}
impl<'d, T, P, TX, TXBUF> I2sWriteDma<'d, T, P, TX, TXBUF> for I2sTx<T, P, TX>
where
T: RegisterAccess,
P: I2sTxPins,
TX: Tx,
{
fn write_dma(self, words: TXBUF) -> Result<I2sWriteDmaTransfer<T, P, TX, TXBUF>, Error>
where
TXBUF: ReadBuffer<Word = u8>,
{
self.start_tx_transfer(words, false)
}
fn write_dma_circular(self, words: TXBUF) -> Result<I2sWriteDmaTransfer<T, P, TX, TXBUF>, Error>
where
TXBUF: ReadBuffer<Word = u8>,
{
self.start_tx_transfer(words, true)
}
}
/// I2S RX channel
pub struct I2sRx<T, P, RX>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
{
register_access: T,
_pins: P,
rx_channel: RX,
}
impl<'d, T, P, RX> I2sRx<T, P, RX>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
{
fn new(mut register_access: T, mut pins: P, rx_channel: RX) -> Self {
pins.configure(&mut register_access);
Self {
register_access,
_pins: pins,
rx_channel,
}
}
fn read_bytes(&mut self, data: &mut [u8]) -> Result<(), Error> {
let ptr = data as *mut _ as *mut u8;
// Reset RX unit and RX FIFO
self.register_access.reset_rx();
// Enable corresponding interrupts if needed
// configure DMA outlink
self.rx_channel.prepare_transfer(
false,
self.register_access.get_dma_peripheral(),
ptr,
data.len(),
)?;
// set I2S_TX_STOP_EN if needed
// start: set I2S_TX_START
self.register_access.rx_start(data.len() - 1);
// wait until I2S_TX_IDLE is 1
self.register_access.wait_for_rx_done();
Ok(())
}
fn start_rx_transfer<RXBUF>(
mut self,
mut words: RXBUF,
circular: bool,
) -> Result<I2sReadDmaTransfer<T, P, RX, RXBUF>, Error>
where
RXBUF: WriteBuffer<Word = u8>,
{
let (ptr, len) = unsafe { words.write_buffer() };
if len % 4 != 0 {
return Err(Error::IllegalArgument);
}
// Reset TX unit and TX FIFO
self.register_access.reset_rx();
// Enable corresponding interrupts if needed
// configure DMA outlink
self.rx_channel.prepare_transfer(
circular,
self.register_access.get_dma_peripheral(),
ptr,
len,
)?;
// set I2S_TX_STOP_EN if needed
// start: set I2S_RX_START
#[cfg(not(esp32))]
self.register_access.rx_start(len - 1);
#[cfg(esp32)]
self.register_access.rx_start(len);
Ok(I2sReadDmaTransfer {
i2s_rx: self,
buffer: words,
})
}
fn wait_rx_dma_done(&self) -> Result<(), Error> {
self.register_access.wait_for_rx_done();
Ok(())
}
}
impl<W, T, P, RX> I2sRead<W> for I2sRx<T, P, RX>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
W: AcceptedWord,
{
fn read(&mut self, words: &mut [W]) -> Result<(), Error> {
if words.len() * core::mem::size_of::<W>() > 4096 || words.len() == 0 {
return Err(Error::IllegalArgument);
}
self.read_bytes(unsafe {
core::slice::from_raw_parts_mut(
words as *mut _ as *mut u8,
words.len() * core::mem::size_of::<W>(),
)
})
}
}
impl<'d, T, P, RX, RXBUF> I2sReadDma<'d, T, P, RX, RXBUF> for I2sRx<T, P, RX>
where
T: RegisterAccess,
P: I2sRxPins,
RX: Rx,
{
fn read_dma(self, words: RXBUF) -> Result<I2sReadDmaTransfer<T, P, RX, RXBUF>, Error>
where
RXBUF: WriteBuffer<Word = u8>,
{
self.start_rx_transfer(words, false)
}
fn read_dma_circular(self, words: RXBUF) -> Result<I2sReadDmaTransfer<T, P, RX, RXBUF>, Error>
where
RXBUF: WriteBuffer<Word = u8>,
{
self.start_rx_transfer(words, true)
}
}
mod private {
use fugit::HertzU32;
use super::{DataFormat, I2sRx, I2sTx, Standard, I2S_LL_MCLK_DIVIDER_MAX};
#[cfg(any(esp32c3, esp32s2))]
use crate::peripherals::i2s::RegisterBlock;
// on ESP32-S3 I2S1 doesn't support all features - use that to avoid using those features
// by accident
#[cfg(any(esp32s3, esp32))]
use crate::peripherals::i2s1::RegisterBlock;
#[cfg(any(esp32c3, esp32s2))]
use crate::peripherals::I2S;
#[cfg(any(esp32s3, esp32))]
use crate::peripherals::I2S0 as I2S;
use crate::{
clock::Clocks,
dma::{
private::{Rx, Tx},
DmaPeripheral,
},
system::Peripheral,
types::{InputSignal, OutputSignal},
};
pub trait I2sTxPins {
fn configure<I>(&mut self, instance: &mut I)
where
I: RegisterAccess;
}
pub trait I2sRxPins {
fn configure<I>(&mut self, instance: &mut I)
where
I: RegisterAccess;
}
pub trait I2sMclkPin {
fn configure<I>(&mut self, instance: &mut I)
where
I: RegisterAccess;
}
pub struct TxCreator<T, TX>
where
T: RegisterAccess + Clone,
TX: Tx,
{
pub register_access: T,
pub tx_channel: TX,
}
impl<T, TX> TxCreator<T, TX>
where
T: RegisterAccess + Clone,
TX: Tx,
{
pub fn with_pins<P>(self, pins: P) -> I2sTx<T, P, TX>
where
P: I2sTxPins,
{
I2sTx::new(self.register_access, pins, self.tx_channel)
}
}
pub struct RxCreator<T, RX>
where
T: RegisterAccess + Clone,
RX: Rx,
{
pub register_access: T,
pub rx_channel: RX,
}
impl<T, RX> RxCreator<T, RX>
where
T: RegisterAccess + Clone,
RX: Rx,
{
pub fn with_pins<P>(self, pins: P) -> I2sRx<T, P, RX>
where
P: I2sRxPins,
{
I2sRx::new(self.register_access, pins, self.rx_channel)
}
}
pub trait I2s0Instance {}
pub trait I2s1Instance {}
pub trait Instance<R>
where
R: RegisterAccess,
{
fn register_access(&self) -> R;
}
impl Instance<I2sPeripheral0> for I2S {
fn register_access(&self) -> I2sPeripheral0 {
I2sPeripheral0 {}
}
}
impl I2s0Instance for I2S {}
#[cfg(esp32s3)]
impl Instance<I2sPeripheral1> for crate::peripherals::I2S1 {
fn register_access(&self) -> I2sPeripheral1 {
I2sPeripheral1 {}
}
}
#[cfg(esp32s3)]
impl I2s1Instance for crate::peripherals::I2S1 {}
pub trait Signals {
fn get_peripheral(&self) -> Peripheral;
fn get_dma_peripheral(&self) -> DmaPeripheral;
fn mclk_signal(&self) -> OutputSignal;
fn bclk_signal(&self) -> OutputSignal;
fn ws_signal(&self) -> OutputSignal;
fn dout_signal(&self) -> OutputSignal;
fn bclk_rx_signal(&self) -> OutputSignal;
fn ws_rx_signal(&self) -> OutputSignal;
fn din_signal(&self) -> InputSignal;
}
pub trait RegBlock {
fn register_block(&self) -> &'static RegisterBlock;
}
#[cfg(any(esp32, esp32s2))]
pub trait RegisterAccess: Signals + RegBlock {
fn set_clock(&self, clock_settings: I2sClockDividers) {
let i2s = self.register_block();
i2s.clkm_conf.modify(|r, w| unsafe {
w.bits(r.bits() | (2 << 21)) // select PLL_160M
});
#[cfg(esp32)]
i2s.clkm_conf.modify(|_, w| w.clka_ena().clear_bit());
i2s.clkm_conf.modify(|_, w| {
w.clk_en()
.set_bit()
.clkm_div_num()
.variant(clock_settings.mclk_divider as u8)
});
i2s.clkm_conf.modify(|_, w| {
w.clkm_div_a()
.variant(clock_settings.denominator as u8)
.clkm_div_b()
.variant(clock_settings.numerator as u8)
});
i2s.sample_rate_conf.modify(|_, w| {
w.tx_bck_div_num()
.variant(clock_settings.bclk_divider as u8)
.rx_bck_div_num()
.variant(clock_settings.bclk_divider as u8)
});
}
fn configure(&self, _standard: &Standard, data_format: &DataFormat) {
let i2s = self.register_block();
let fifo_mod = match data_format {
DataFormat::Data32Channel32 => 2,
DataFormat::Data16Channel16 => 0,
};
i2s.sample_rate_conf
.modify(|_, w| w.tx_bits_mod().variant(data_format.channel_bits()));
i2s.sample_rate_conf
.modify(|_, w| w.rx_bits_mod().variant(data_format.channel_bits()));
i2s.conf.modify(|_, w| {
w.tx_slave_mod()
.clear_bit()
.rx_slave_mod()
.clear_bit()
.tx_msb_shift()
.set_bit() // ?
.rx_msb_shift()
.set_bit() // ?
.tx_short_sync()
.variant(false) //??
.rx_short_sync()
.variant(false) //??
.tx_msb_right()
.clear_bit()
.rx_msb_right()
.clear_bit()
.tx_right_first()
.clear_bit()
.rx_right_first()
.clear_bit()
.tx_mono()
.clear_bit()
.rx_mono()
.clear_bit()
.sig_loopback()
.clear_bit()
});
i2s.fifo_conf.modify(|_, w| {
w.tx_fifo_mod()
.variant(fifo_mod)
.tx_fifo_mod_force_en()
.set_bit()
.dscr_en()
.set_bit()
.rx_fifo_mod()
.variant(fifo_mod)
.rx_fifo_mod_force_en()
.set_bit()
});
i2s.conf_chan
.modify(|_, w| w.tx_chan_mod().variant(0).rx_chan_mod().variant(0)); // for now only stereo
i2s.conf1
.modify(|_, w| w.tx_pcm_bypass().set_bit().rx_pcm_bypass().set_bit());
i2s.pd_conf
.modify(|_, w| w.fifo_force_pu().set_bit().fifo_force_pd().clear_bit());
i2s.conf2
.modify(|_, w| w.camera_en().clear_bit().lcd_en().clear_bit());
}
fn set_master(&self) {
let i2s = self.register_block();
i2s.conf
.modify(|_, w| w.rx_slave_mod().clear_bit().tx_slave_mod().clear_bit());
}
fn update(&self) {
// nothing to do
}
fn reset_tx(&self) {
let i2s = self.register_block();
i2s.conf
.modify(|_, w| w.tx_reset().set_bit().tx_fifo_reset().set_bit());
i2s.conf
.modify(|_, w| w.tx_reset().clear_bit().tx_fifo_reset().clear_bit());
i2s.lc_conf.modify(|_, w| w.out_rst().set_bit());
i2s.lc_conf.modify(|_, w| w.out_rst().clear_bit());
i2s.int_clr.write(|w| {
w.out_done_int_clr()
.set_bit()
.out_total_eof_int_clr()
.set_bit()
});
}
fn tx_start(&self) {
let i2s = self.register_block();
i2s.conf.modify(|_, w| w.tx_start().set_bit());
}
fn wait_for_tx_done(&self) {
let i2s = self.register_block();
while i2s.state.read().tx_idle().bit_is_clear() {
// wait
}
i2s.conf.modify(|_, w| w.tx_start().clear_bit());
}
fn reset_rx(&self) {
let i2s = self.register_block();
i2s.conf
.modify(|_, w| w.rx_reset().set_bit().rx_fifo_reset().set_bit());
i2s.conf
.modify(|_, w| w.rx_reset().clear_bit().rx_fifo_reset().clear_bit());
i2s.lc_conf.modify(|_, w| w.in_rst().set_bit());
i2s.lc_conf.modify(|_, w| w.in_rst().clear_bit());
i2s.int_clr
.write(|w| w.in_done_int_clr().set_bit().in_suc_eof_int_clr().set_bit());
}
fn rx_start(&self, len: usize) {
let i2s = self.register_block();
i2s.int_clr.write(|w| w.in_suc_eof_int_clr().set_bit());
#[cfg(not(esp32))]
i2s.rxeof_num
.modify(|_, w| w.rx_eof_num().variant(len as u32));
// On ESP32, the eof_num count in words.
#[cfg(esp32)]
i2s.rxeof_num
.modify(|_, w| w.rx_eof_num().variant((len / 4) as u32));
i2s.conf.modify(|_, w| w.rx_start().set_bit());
}
fn wait_for_rx_done(&self) {
let i2s = self.register_block();
while i2s.int_raw.read().in_suc_eof_int_raw().bit_is_clear() {
// wait
}
i2s.int_clr.write(|w| w.in_suc_eof_int_clr().set_bit());
}
}
#[cfg(any(esp32c3, esp32s3))]
pub trait RegisterAccess: Signals + RegBlock {
fn set_clock(&self, clock_settings: I2sClockDividers) {
let i2s = self.register_block();
let clkm_div_x: u32;
let clkm_div_y: u32;
let clkm_div_z: u32;
let clkm_div_yn1: u32;
if clock_settings.denominator == 0 || clock_settings.numerator == 0 {
clkm_div_x = 0;
clkm_div_y = 0;
clkm_div_z = 0;
clkm_div_yn1 = 1;
} else {
if clock_settings.numerator > clock_settings.denominator / 2 {
clkm_div_x = clock_settings
.denominator
.overflowing_div(
clock_settings
.denominator
.overflowing_sub(clock_settings.numerator)
.0,
)
.0
.overflowing_sub(1)
.0;
clkm_div_y = clock_settings.denominator
% (clock_settings
.denominator
.overflowing_sub(clock_settings.numerator)
.0);
clkm_div_z = clock_settings
.denominator
.overflowing_sub(clock_settings.numerator)
.0;
clkm_div_yn1 = 1;
} else {
clkm_div_x = clock_settings.denominator / clock_settings.numerator - 1;
clkm_div_y = clock_settings.denominator % clock_settings.numerator;
clkm_div_z = clock_settings.numerator;
clkm_div_yn1 = 0;
}
}
i2s.tx_clkm_div_conf.modify(|_, w| {
w.tx_clkm_div_x()
.variant(clkm_div_x as u16)
.tx_clkm_div_y()
.variant(clkm_div_y as u16)
.tx_clkm_div_yn1()
.variant(if clkm_div_yn1 != 0 { true } else { false })
.tx_clkm_div_z()
.variant(clkm_div_z as u16)
});
i2s.tx_clkm_conf.modify(|_, w| {
w.clk_en()
.set_bit()
.tx_clk_active()
.set_bit()
.tx_clk_sel()
.variant(2) // for now fixed at 160MHz
.tx_clkm_div_num()
.variant(clock_settings.mclk_divider as u8)
});
i2s.tx_conf1.modify(|_, w| {
w.tx_bck_div_num()
.variant((clock_settings.bclk_divider - 1) as u8)
});
i2s.rx_clkm_div_conf.modify(|_, w| {
w.rx_clkm_div_x()
.variant(clkm_div_x as u16)
.rx_clkm_div_y()
.variant(clkm_div_y as u16)
.rx_clkm_div_yn1()
.variant(if clkm_div_yn1 != 0 { true } else { false })
.rx_clkm_div_z()
.variant(clkm_div_z as u16)
});
i2s.rx_clkm_conf.modify(|_, w| {
w.rx_clk_active()
.set_bit()
.rx_clk_sel()
.variant(2) // for now fixed at 160MHz
.rx_clkm_div_num()
.variant(clock_settings.mclk_divider as u8)
.mclk_sel()
.variant(true)
});
i2s.rx_conf1.modify(|_, w| {
w.rx_bck_div_num()
.variant((clock_settings.bclk_divider - 1) as u8)
});
}
fn configure(&self, _standard: &Standard, data_format: &DataFormat) {
let i2s = self.register_block();
i2s.tx_conf1.modify(|_, w| {
w.tx_tdm_ws_width()
.variant(data_format.channel_bits() - 1)
.tx_bits_mod()
.variant(data_format.data_bits() - 1)
.tx_tdm_chan_bits()
.variant(data_format.channel_bits() - 1)
.tx_half_sample_bits()
.variant(data_format.channel_bits() - 1)
.tx_msb_shift()
.set_bit()
});
i2s.tx_conf.modify(|_, w| {
w.tx_mono()
.clear_bit()
.tx_mono_fst_vld()
.set_bit()
.tx_stop_en()
.set_bit()
.tx_chan_equal()
.clear_bit()
.tx_tdm_en()
.set_bit()
.tx_pdm_en()
.clear_bit()
.tx_pcm_bypass()
.set_bit()
.tx_big_endian()
.clear_bit()
.tx_bit_order()
.clear_bit()
.tx_chan_mod()
.variant(0)
});
i2s.tx_tdm_ctrl.modify(|_, w| {
w.tx_tdm_tot_chan_num()
.variant(1)
.tx_tdm_chan0_en()
.set_bit()
.tx_tdm_chan1_en()
.set_bit()
.tx_tdm_chan2_en()
.clear_bit()
.tx_tdm_chan3_en()
.clear_bit()
.tx_tdm_chan4_en()
.clear_bit()
.tx_tdm_chan5_en()
.clear_bit()
.tx_tdm_chan6_en()
.clear_bit()
.tx_tdm_chan7_en()
.clear_bit()
.tx_tdm_chan8_en()
.clear_bit()
.tx_tdm_chan9_en()
.clear_bit()
.tx_tdm_chan10_en()
.clear_bit()
.tx_tdm_chan11_en()
.clear_bit()
.tx_tdm_chan12_en()
.clear_bit()
.tx_tdm_chan13_en()
.clear_bit()
.tx_tdm_chan14_en()
.clear_bit()
.tx_tdm_chan15_en()
.clear_bit()
});
i2s.rx_conf1.modify(|_, w| {
w.rx_tdm_ws_width()
.variant(data_format.channel_bits() - 1)
.rx_bits_mod()
.variant(data_format.data_bits() - 1)
.rx_tdm_chan_bits()
.variant(data_format.channel_bits() - 1)
.rx_half_sample_bits()
.variant(data_format.channel_bits() - 1)
.rx_msb_shift()
.set_bit()
});
i2s.rx_conf.modify(|_, w| {
w.rx_mono()
.clear_bit()
.rx_mono_fst_vld()
.set_bit()
.rx_stop_mode()
.variant(2)
.rx_tdm_en()
.set_bit()
.rx_pdm_en()
.clear_bit()
.rx_pcm_bypass()
.set_bit()
.rx_big_endian()
.clear_bit()
.rx_bit_order()
.clear_bit()
});
i2s.rx_tdm_ctrl.modify(|_, w| {
w.rx_tdm_tot_chan_num()
.variant(1)
.rx_tdm_pdm_chan0_en()
.set_bit()
.rx_tdm_pdm_chan1_en()
.set_bit()
.rx_tdm_pdm_chan2_en()
.clear_bit()
.rx_tdm_pdm_chan3_en()
.clear_bit()
.rx_tdm_pdm_chan4_en()
.clear_bit()
.rx_tdm_pdm_chan5_en()
.clear_bit()
.rx_tdm_pdm_chan6_en()
.clear_bit()
.rx_tdm_pdm_chan7_en()
.clear_bit()
.rx_tdm_chan8_en()
.clear_bit()
.rx_tdm_chan9_en()
.clear_bit()
.rx_tdm_chan10_en()
.clear_bit()
.rx_tdm_chan11_en()
.clear_bit()
.rx_tdm_chan12_en()
.clear_bit()
.rx_tdm_chan13_en()
.clear_bit()
.rx_tdm_chan14_en()
.clear_bit()
.rx_tdm_chan15_en()
.clear_bit()
});
}
fn set_master(&self) {
let i2s = self.register_block();
i2s.tx_conf.modify(|_, w| w.tx_slave_mod().clear_bit());
i2s.rx_conf.modify(|_, w| w.rx_slave_mod().clear_bit());
}
fn update(&self) {
let i2s = self.register_block();
i2s.tx_conf.modify(|_, w| w.tx_update().clear_bit());
i2s.tx_conf.modify(|_, w| w.tx_update().set_bit());
i2s.rx_conf.modify(|_, w| w.rx_update().clear_bit());
i2s.rx_conf.modify(|_, w| w.rx_update().set_bit());
}
fn reset_tx(&self) {
let i2s = self.register_block();
i2s.tx_conf
.modify(|_, w| w.tx_reset().set_bit().tx_fifo_reset().set_bit());
i2s.tx_conf
.modify(|_, w| w.tx_reset().clear_bit().tx_fifo_reset().clear_bit());
i2s.int_clr
.write(|w| w.tx_done_int_clr().set_bit().tx_hung_int_clr().set_bit());
}
fn tx_start(&self) {
let i2s = self.register_block();
i2s.tx_conf.modify(|_, w| w.tx_start().set_bit());
}
fn wait_for_tx_done(&self) {
let i2s = self.register_block();
while i2s.state.read().tx_idle().bit_is_clear() {
// wait
}
i2s.tx_conf.modify(|_, w| w.tx_start().clear_bit());
}
fn reset_rx(&self) {
let i2s = self.register_block();
i2s.rx_conf
.modify(|_, w| w.rx_reset().set_bit().rx_fifo_reset().set_bit());
i2s.rx_conf
.modify(|_, w| w.rx_reset().clear_bit().rx_fifo_reset().clear_bit());
i2s.int_clr
.write(|w| w.rx_done_int_clr().set_bit().rx_hung_int_clr().set_bit());
}
fn rx_start(&self, len: usize) {
let i2s = self.register_block();
i2s.rxeof_num.write(|w| w.rx_eof_num().variant(len as u16));
i2s.rx_conf.modify(|_, w| w.rx_start().set_bit());
}
fn wait_for_rx_done(&self) {
let i2s = self.register_block();
while i2s.int_raw.read().rx_done_int_raw().bit_is_clear() {
// wait
}
i2s.int_clr.write(|w| w.rx_done_int_clr().set_bit());
}
}
#[derive(Clone)]
pub struct I2sPeripheral0 {}
#[cfg(any(esp32s3, esp32))]
#[derive(Clone)]
pub struct I2sPeripheral1 {}
#[cfg(esp32c3)]
impl Signals for I2sPeripheral0 {
fn get_peripheral(&self) -> Peripheral {
Peripheral::I2s0
}
fn get_dma_peripheral(&self) -> DmaPeripheral {
DmaPeripheral::I2s0
}
fn mclk_signal(&self) -> OutputSignal {
OutputSignal::I2S_MCLK
}
fn bclk_signal(&self) -> OutputSignal {
OutputSignal::I2SO_BCK
}
fn ws_signal(&self) -> OutputSignal {
OutputSignal::I2SO_WS
}
fn dout_signal(&self) -> OutputSignal {
OutputSignal::I2SI_SD
}
fn bclk_rx_signal(&self) -> OutputSignal {
OutputSignal::I2SI_BCK
}
fn ws_rx_signal(&self) -> OutputSignal {
OutputSignal::I2SI_WS
}
fn din_signal(&self) -> InputSignal {
InputSignal::I2SI_SD
}
}
#[cfg(esp32s3)]
impl Signals for I2sPeripheral0 {
fn get_peripheral(&self) -> Peripheral {
Peripheral::I2s0
}
fn get_dma_peripheral(&self) -> DmaPeripheral {
DmaPeripheral::I2s0
}
fn mclk_signal(&self) -> OutputSignal {
OutputSignal::I2S0_MCLK
}
fn bclk_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_BCK
}
fn ws_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_WS
}
fn dout_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_SD
}
fn bclk_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S0I_BCK
}
fn ws_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S0I_WS
}
fn din_signal(&self) -> InputSignal {
InputSignal::I2S0I_SD
}
}
#[cfg(esp32s3)]
impl Signals for I2sPeripheral1 {
fn get_peripheral(&self) -> Peripheral {
Peripheral::I2s1
}
fn get_dma_peripheral(&self) -> DmaPeripheral {
DmaPeripheral::I2s1
}
fn mclk_signal(&self) -> OutputSignal {
OutputSignal::I2S1_MCLK
}
fn bclk_signal(&self) -> OutputSignal {
OutputSignal::I2S1O_BCK
}
fn ws_signal(&self) -> OutputSignal {
OutputSignal::I2S1O_WS
}
fn dout_signal(&self) -> OutputSignal {
OutputSignal::I2S1O_SD
}
fn bclk_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S1I_BCK
}
fn ws_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S1I_WS
}
fn din_signal(&self) -> InputSignal {
InputSignal::I2S1I_SD
}
}
#[cfg(esp32)]
impl Signals for I2sPeripheral0 {
fn get_peripheral(&self) -> Peripheral {
Peripheral::I2s0
}
fn get_dma_peripheral(&self) -> DmaPeripheral {
DmaPeripheral::I2s0
}
fn mclk_signal(&self) -> OutputSignal {
panic!("MCLK currently not supported on ESP32");
}
fn bclk_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_BCK
}
fn ws_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_WS
}
fn dout_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_DATA_23
}
fn bclk_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S0I_BCK
}
fn ws_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S0I_WS
}
fn din_signal(&self) -> InputSignal {
InputSignal::I2S0I_DATA_15
}
}
#[cfg(esp32)]
impl Signals for I2sPeripheral1 {
fn get_peripheral(&self) -> Peripheral {
Peripheral::I2s1
}
fn get_dma_peripheral(&self) -> DmaPeripheral {
DmaPeripheral::I2s1
}
fn mclk_signal(&self) -> OutputSignal {
panic!("MCLK currently not supported on ESP32");
}
fn bclk_signal(&self) -> OutputSignal {
OutputSignal::I2S1O_BCK
}
fn ws_signal(&self) -> OutputSignal {
OutputSignal::I2S1O_WS
}
fn dout_signal(&self) -> OutputSignal {
OutputSignal::I2S1O_DATA_23
}
fn bclk_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S1I_BCK
}
fn ws_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S1I_WS
}
fn din_signal(&self) -> InputSignal {
InputSignal::I2S1I_DATA_15
}
}
#[cfg(esp32s2)]
impl Signals for I2sPeripheral0 {
fn get_peripheral(&self) -> Peripheral {
Peripheral::I2s0
}
fn get_dma_peripheral(&self) -> DmaPeripheral {
DmaPeripheral::I2s0
}
fn mclk_signal(&self) -> OutputSignal {
OutputSignal::CLK_I2S
}
fn bclk_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_BCK
}
fn ws_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_WS
}
fn dout_signal(&self) -> OutputSignal {
OutputSignal::I2S0O_DATA_OUT23
}
fn bclk_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S0I_BCK
}
fn ws_rx_signal(&self) -> OutputSignal {
OutputSignal::I2S0I_WS
}
fn din_signal(&self) -> InputSignal {
InputSignal::I2S0I_DATA_IN15
}
}
impl RegBlock for I2sPeripheral0 {
fn register_block(&self) -> &'static RegisterBlock {
unsafe { core::mem::transmute(I2S::PTR) }
}
}
#[cfg(any(esp32s3, esp32))]
impl RegBlock for I2sPeripheral1 {
fn register_block(&self) -> &'static RegisterBlock {
unsafe { core::mem::transmute(crate::peripherals::I2S1::PTR) }
}
}
impl RegisterAccess for I2sPeripheral0 {}
#[cfg(any(esp32s3, esp32))]
impl RegisterAccess for I2sPeripheral1 {}
pub struct I2sClockDividers {
mclk_divider: u32,
bclk_divider: u32,
denominator: u32,
numerator: u32,
}
pub fn calculate_clock(
sample_rate: impl Into<fugit::HertzU32>,
channels: u8,
data_bits: u8,
_clocks: &Clocks,
) -> I2sClockDividers {
// this loosely corresponds to `i2s_std_calculate_clock` and
// `i2s_ll_tx_set_mclk` in esp-idf
//
// main difference is we are using fixed-point arithmetic here
let mclk_multiple = 256;
let sclk = 160_000_000; // for now it's fixed PLL_160M_CLK
let rate_hz: HertzU32 = sample_rate.into();
let rate = rate_hz.raw();
let bclk = rate * channels as u32 * data_bits as u32;
let mclk = rate * mclk_multiple;
let bclk_divider = mclk / bclk;
let mut mclk_divider = sclk / mclk;
let mut ma: u32;
let mut mb: u32;
let mut denominator: u32 = 0;
let mut numerator: u32 = 0;
let freq_diff = sclk.abs_diff(mclk * mclk_divider);
if freq_diff != 0 {
let decimal = freq_diff as u64 * 10000 / mclk as u64;
// Carry bit if the decimal is greater than 1.0 - 1.0 / (63.0 * 2) = 125.0 /
// 126.0
if decimal > 1250000 / 126 {
mclk_divider += 1;
} else {
let mut min: u32 = !0;
for a in 2..=I2S_LL_MCLK_DIVIDER_MAX {
let b = (a as u64) * (freq_diff as u64 * 10000u64 / mclk as u64) + 5000;
ma = ((freq_diff as u64 * 10000u64 * a as u64) / 10000) as u32;
mb = (mclk as u64 * (b / 10000)) as u32;
if ma == mb {
denominator = a as u32;
numerator = (b / 10000) as u32;
break;
}
if mb.abs_diff(ma) < min {
denominator = a as u32;
numerator = b as u32;
min = mb.abs_diff(ma);
}
}
}
}
I2sClockDividers {
mclk_divider,
bclk_divider,
denominator,
numerator,
}
}
}