//! Demonstrates the use of the ECC peripheral and compares the speed of //! hardware-accelerated and pure software ECC. #![no_std] #![no_main] use core::ops::Mul; use crypto_bigint::{ modular::runtime_mod::{DynResidue, DynResidueParams}, Encoding, U192, U256, }; use elliptic_curve::sec1::ToEncodedPoint; use esp32c6_hal::{ ecc::{Ecc, EllipticCurve, Error}, peripherals::Peripherals, prelude::*, systimer::SystemTimer, Rng, }; use esp_backtrace as _; use esp_println::{print, println}; use hex_literal::hex; struct TestParams<'a> { prime_fields: &'a [&'a [u8]], nb_loop_mul: usize, } const TEST_PARAMS_VECTOR: TestParams = TestParams { prime_fields: &[ &hex!("fffffffffffffffffffffffffffffffeffffffffffffffff"), &hex!("ffffffff00000001000000000000000000000000ffffffffffffffffffffffff"), ], nb_loop_mul: 10, }; #[entry] fn main() -> ! { let peripherals = Peripherals::take(); let mut system = peripherals.PCR.split(); let mut rng = Rng::new(peripherals.RNG); println!("ECC example"); let mut hw_ecc = Ecc::new(peripherals.ECC, &mut system.peripheral_clock_control); println!("Beginning stress tests..."); test_affine_point_multiplication(&mut hw_ecc, &mut rng); test_affine_point_verification(&mut hw_ecc, &mut rng); test_afine_point_verification_multiplication(&mut hw_ecc, &mut rng); test_jacobian_point_multiplication(&mut hw_ecc, &mut rng); test_jacobian_point_verification(&mut hw_ecc, &mut rng); test_afine_point_verification_jacobian_multiplication(&mut hw_ecc, &mut rng); println!("Finished stress tests!"); loop {} } fn test_affine_point_multiplication(ecc: &mut Ecc, rng: &mut Rng) { for &prime_field in TEST_PARAMS_VECTOR.prime_fields { print!("Beginning affine point multiplication tests over "); match prime_field.len() { 24 => print!("secp192r1..."), _ => print!("secp256r1..."), }; let t1 = &mut [0_u8; 96]; let (k, x) = t1.split_at_mut(prime_field.len()); let (x, y) = x.split_at_mut(prime_field.len()); let (y, _) = y.split_at_mut(prime_field.len()); let mut delta_time = 0; for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { loop { rng.read(k).unwrap(); let is_zero = k.iter().all(|&elt| elt == 0); let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); if is_zero == false && is_modulus == false { break; } } let curve = match prime_field.len() { 24 => { x.copy_from_slice( p192::AffinePoint::GENERATOR .to_encoded_point(false) .x() .unwrap(), ); y.copy_from_slice( p192::AffinePoint::GENERATOR .to_encoded_point(false) .y() .unwrap(), ); &EllipticCurve::P192 } 32 => { x.copy_from_slice( p256::AffinePoint::GENERATOR .to_encoded_point(false) .x() .unwrap(), ); y.copy_from_slice( p256::AffinePoint::GENERATOR .to_encoded_point(false) .y() .unwrap(), ); &EllipticCurve::P256 } _ => unimplemented!(), }; let begin_time = SystemTimer::now(); ecc.affine_point_multiplication(curve, k, x, y) .expect("Inputs data doesn't match the key length selected."); let end_time = SystemTimer::now(); delta_time += end_time - begin_time; let t2 = &mut [0_u8; 64]; let (sw_x, sw_y) = t2.split_at_mut(prime_field.len()); let (sw_y, _) = sw_y.split_at_mut(prime_field.len()); match prime_field.len() { 24 => { let sw_k = p192::Scalar::from(elliptic_curve::ScalarPrimitive::from_slice(k).unwrap()); let q = p192::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); sw_x.copy_from_slice(q.x().unwrap().as_slice()); sw_y.copy_from_slice(q.y().unwrap().as_slice()); } 32 => { let sw_k = p256::Scalar::from(elliptic_curve::ScalarPrimitive::from_slice(k).unwrap()); let q = p256::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); sw_x.copy_from_slice(q.x().unwrap().as_slice()); sw_y.copy_from_slice(q.y().unwrap().as_slice()); } _ => unimplemented!(), }; for (a, b) in x.iter().zip(sw_x) { assert_eq!( a, b, "ECC failed during affine point multiplication with d_a = {:02X?} ({:02X?} != {:02X?})", k, a, b, ); } for (a, b) in y.iter().zip(sw_y) { assert_eq!( a, b, "ECC failed during affine point multiplication with d_a = {:02X?} ({:02X?} != {:02X?})", k, a, b, ); } } println!( "ok (it took {} cycles in average)", delta_time / (TEST_PARAMS_VECTOR.nb_loop_mul as u64) ); } } fn test_affine_point_verification(ecc: &mut Ecc, rng: &mut Rng) { for &prime_field in TEST_PARAMS_VECTOR.prime_fields { print!("Beginning affine point verification tests over "); match prime_field.len() { 24 => print!("secp192r1..."), _ => print!("secp256r1..."), }; let t1 = &mut [0_u8; 96]; let (k, x) = t1.split_at_mut(prime_field.len()); let (x, y) = x.split_at_mut(prime_field.len()); let (y, _) = y.split_at_mut(prime_field.len()); let mut delta_time = 0; for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { loop { rng.read(k).unwrap(); let is_zero = k.iter().all(|&elt| elt == 0); let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); if is_zero == false && is_modulus == false { break; } } let curve = match prime_field.len() { 24 => { let sw_k = p192::Scalar::from(elliptic_curve::ScalarPrimitive::from_slice(k).unwrap()); let q = p192::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); x.copy_from_slice(q.x().unwrap().as_slice()); y.copy_from_slice(q.y().unwrap().as_slice()); &EllipticCurve::P192 } 32 => { let sw_k = p256::Scalar::from(elliptic_curve::ScalarPrimitive::from_slice(k).unwrap()); let q = p256::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); x.copy_from_slice(q.x().unwrap().as_slice()); y.copy_from_slice(q.y().unwrap().as_slice()); &EllipticCurve::P256 } _ => unimplemented!(), }; let begin_time = SystemTimer::now(); match ecc.affine_point_verification(&curve, x, y) { Err(Error::SizeMismatchCurve) => { assert!(false, "Inputs data doesn't match the key length selected.") } Err(Error::PointNotOnSelectedCurve) => assert!( false, "ECC failed while affine point verification with x = {:02X?} and y = {:02X?}.", x, y, ), _ => {} } let end_time = SystemTimer::now(); delta_time += end_time - begin_time; } println!( "ok (it took {} cycles in average)", delta_time / (TEST_PARAMS_VECTOR.nb_loop_mul as u64) ); } } fn test_afine_point_verification_multiplication(ecc: &mut Ecc, rng: &mut Rng) { for &prime_field in TEST_PARAMS_VECTOR.prime_fields { print!("Beginning affine point verification + multiplication tests over "); match prime_field.len() { 24 => print!("secp192r1..."), _ => print!("secp256r1..."), }; let t1 = &mut [0_u8; 96]; let (k, x) = t1.split_at_mut(prime_field.len()); let (x, y) = x.split_at_mut(prime_field.len()); let (y, _) = y.split_at_mut(prime_field.len()); let mut delta_time = 0; for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { loop { rng.read(k).unwrap(); let is_zero = k.iter().all(|&elt| elt == 0); let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); if is_zero == false && is_modulus == false { break; } } let curve = match prime_field.len() { 24 => { x.copy_from_slice( p192::AffinePoint::GENERATOR .to_encoded_point(false) .x() .unwrap(), ); y.copy_from_slice( p192::AffinePoint::GENERATOR .to_encoded_point(false) .y() .unwrap(), ); &EllipticCurve::P192 } 32 => { x.copy_from_slice( p256::AffinePoint::GENERATOR .to_encoded_point(false) .x() .unwrap(), ); y.copy_from_slice( p256::AffinePoint::GENERATOR .to_encoded_point(false) .y() .unwrap(), ); &EllipticCurve::P256 } _ => unimplemented!(), }; let begin_time = SystemTimer::now(); match ecc.affine_point_verification_multiplication(curve, k, x, y) { Err(Error::SizeMismatchCurve) => assert!(false, "Inputs data doesn't match the key length selected."), Err(Error::PointNotOnSelectedCurve) => assert!( false, "ECC failed while affine point verification + multiplication with x = {:02X?} and y = {:02X?}.", x, y, ), _ => {}, } let end_time = SystemTimer::now(); delta_time += end_time - begin_time; let t2 = &mut [0_u8; 64]; let (sw_x, sw_y) = t2.split_at_mut(prime_field.len()); let (sw_y, _) = sw_y.split_at_mut(prime_field.len()); match prime_field.len() { 24 => { let sw_k = p192::Scalar::from(elliptic_curve::ScalarPrimitive::from_slice(k).unwrap()); let q = p192::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); sw_x.copy_from_slice(q.x().unwrap().as_slice()); sw_y.copy_from_slice(q.y().unwrap().as_slice()); } 32 => { let sw_k = p256::Scalar::from(elliptic_curve::ScalarPrimitive::from_slice(k).unwrap()); let q = p256::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); sw_x.copy_from_slice(q.x().unwrap().as_slice()); sw_y.copy_from_slice(q.y().unwrap().as_slice()); } _ => unimplemented!(), }; for (a, b) in x.iter().zip(sw_x) { assert_eq!( a, b, "ECC failed during affine point verification + multiplication with d_a = {:02X?} ({:02X?} != {:02X?})", k, a, b, ); } for (a, b) in y.iter().zip(sw_y) { assert_eq!( a, b, "ECC failed during affine point verification + multiplication with d_a = {:02X?} ({:02X?} != {:02X?})", k, a, b, ); } } println!( "ok (it took {} cycles in average)", delta_time / (TEST_PARAMS_VECTOR.nb_loop_mul as u64) ); } } fn test_jacobian_point_multiplication(ecc: &mut Ecc, rng: &mut Rng) { for &prime_field in TEST_PARAMS_VECTOR.prime_fields { print!("Beginning jacobian point multiplication tests over "); match prime_field.len() { 24 => print!("secp192r1..."), _ => print!("secp256r1..."), }; let t1 = &mut [0_u8; 96]; let (k, x) = t1.split_at_mut(prime_field.len()); let (x, y) = x.split_at_mut(prime_field.len()); let (y, _) = y.split_at_mut(prime_field.len()); let mut delta_time = 0; for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { let t2 = &mut [0_u8; 96]; let (sw_x, sw_y) = t2.split_at_mut(prime_field.len()); let (sw_y, sw_k) = sw_y.split_at_mut(prime_field.len()); let (sw_k, _) = sw_k.split_at_mut(prime_field.len()); loop { rng.read(k).unwrap(); let is_zero = k.iter().all(|&elt| elt == 0); let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); if is_zero == false && is_modulus == false { break; } } sw_k.copy_from_slice(k); let curve = match prime_field.len() { 24 => { x.copy_from_slice( p192::AffinePoint::GENERATOR .to_encoded_point(false) .x() .unwrap(), ); y.copy_from_slice( p192::AffinePoint::GENERATOR .to_encoded_point(false) .y() .unwrap(), ); &EllipticCurve::P192 } 32 => { x.copy_from_slice( p256::AffinePoint::GENERATOR .to_encoded_point(false) .x() .unwrap(), ); y.copy_from_slice( p256::AffinePoint::GENERATOR .to_encoded_point(false) .y() .unwrap(), ); &EllipticCurve::P256 } _ => unimplemented!(), }; let begin_time = SystemTimer::now(); ecc.jacobian_point_multiplication(curve, k, x, y) .expect("Inputs data doesn't match the key length selected."); let end_time = SystemTimer::now(); delta_time += end_time - begin_time; match prime_field.len() { 24 => { let sw_k = p192::Scalar::from( elliptic_curve::ScalarPrimitive::from_slice(sw_k).unwrap(), ); let q = p192::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); let modulus = DynResidueParams::new(&U192::from_be_slice(prime_field)); let x_affine = DynResidue::new(&U192::from_be_slice(q.x().unwrap().as_slice()), modulus); let y_affine = DynResidue::new(&U192::from_be_slice(q.y().unwrap().as_slice()), modulus); let z = DynResidue::new(&U192::from_be_slice(k), modulus); let x_jacobian = x_affine * z * z; let y_jacobian = y_affine * z * z * z; sw_x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); sw_y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); } 32 => { let sw_k = p256::Scalar::from( elliptic_curve::ScalarPrimitive::from_slice(sw_k).unwrap(), ); let q = p256::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); let modulus = DynResidueParams::new(&U256::from_be_slice(prime_field)); let x_affine = DynResidue::new(&U256::from_be_slice(q.x().unwrap().as_slice()), modulus); let y_affine = DynResidue::new(&U256::from_be_slice(q.y().unwrap().as_slice()), modulus); let z = DynResidue::new(&U256::from_be_slice(k), modulus); let x_jacobian = x_affine * z * z; let y_jacobian = y_affine * z * z * z; sw_x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); sw_y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); } _ => unimplemented!(), }; for (a, b) in x.iter().zip(sw_x.iter()) { assert_eq!( a, b, "ECC failed during jacobian point multiplication.\nX = {:02X?}\nX = {:02X?}", x, sw_x, ); } for (a, b) in y.iter().zip(sw_y.iter()) { assert_eq!( a, b, "ECC failed during jacobian point multiplication.\nY = {:02X?}\nY = {:02X?}", y, sw_y, ); } } println!( "ok (it took {} cycles in average)", delta_time / (TEST_PARAMS_VECTOR.nb_loop_mul as u64) ); } } fn test_jacobian_point_verification(ecc: &mut Ecc, rng: &mut Rng) { for &prime_field in TEST_PARAMS_VECTOR.prime_fields { print!("Beginning jacobian point verification tests over "); match prime_field.len() { 24 => print!("secp192r1..."), _ => print!("secp256r1..."), }; let t1 = &mut [0_u8; 128]; let (k, x) = t1.split_at_mut(prime_field.len()); let (x, y) = x.split_at_mut(prime_field.len()); let (y, z) = y.split_at_mut(prime_field.len()); let (z, _) = z.split_at_mut(prime_field.len()); let mut delta_time = 0; for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { loop { rng.read(k).unwrap(); rng.read(z).unwrap(); let is_zero = k.iter().all(|&elt| elt == 0) || z.iter().all(|&elt| elt == 0); let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b) || z.iter().zip(prime_field).all(|(&a, &b)| a == b); if is_zero == false && is_modulus == false { break; } } let curve = match prime_field.len() { 24 => { let sw_k = p192::Scalar::from(elliptic_curve::ScalarPrimitive::from_slice(k).unwrap()); let q = p192::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); let modulus = DynResidueParams::new(&U192::from_be_slice(prime_field)); let x_affine = DynResidue::new(&U192::from_be_slice(q.x().unwrap().as_slice()), modulus); let y_affine = DynResidue::new(&U192::from_be_slice(q.y().unwrap().as_slice()), modulus); let z = DynResidue::new(&U192::from_be_slice(z), modulus); let x_jacobian = x_affine * z * z; let y_jacobian = y_affine * z * z * z; x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); &EllipticCurve::P192 } 32 => { let sw_k = p256::Scalar::from(elliptic_curve::ScalarPrimitive::from_slice(k).unwrap()); let q = p256::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); let modulus = DynResidueParams::new(&U256::from_be_slice(prime_field)); let x_affine = DynResidue::new(&U256::from_be_slice(q.x().unwrap().as_slice()), modulus); let y_affine = DynResidue::new(&U256::from_be_slice(q.y().unwrap().as_slice()), modulus); let z = DynResidue::new(&U256::from_be_slice(z), modulus); let x_jacobian = x_affine * z * z; let y_jacobian = y_affine * z * z * z; x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); &EllipticCurve::P256 } _ => unimplemented!(), }; let begin_time = SystemTimer::now(); match ecc.jacobian_point_verification(&curve, x, y, z) { Err(Error::SizeMismatchCurve) => { assert!(false, "Inputs data doesn't match the key length selected.") } Err(Error::PointNotOnSelectedCurve) => assert!( false, "ECC failed while base point verification with x = {:02X?} and y = {:02X?}.", x, y, ), _ => {} } let end_time = SystemTimer::now(); delta_time += end_time - begin_time; } println!( "ok (it took {} cycles in average)", delta_time / (TEST_PARAMS_VECTOR.nb_loop_mul as u64) ); } } fn test_afine_point_verification_jacobian_multiplication(ecc: &mut Ecc, rng: &mut Rng) { for &prime_field in TEST_PARAMS_VECTOR.prime_fields { print!("Beginning affine point verification + jacobian point multiplication tests over "); match prime_field.len() { 24 => print!("secp192r1..."), _ => print!("secp256r1..."), }; let t1 = &mut [0_u8; 96]; let (k, x) = t1.split_at_mut(prime_field.len()); let (x, y) = x.split_at_mut(prime_field.len()); let (y, _) = y.split_at_mut(prime_field.len()); let mut delta_time = 0; for _ in 0..TEST_PARAMS_VECTOR.nb_loop_mul { let t2 = &mut [0_u8; 96]; let (sw_x, sw_y) = t2.split_at_mut(prime_field.len()); let (sw_y, sw_k) = sw_y.split_at_mut(prime_field.len()); let (sw_k, _) = sw_k.split_at_mut(prime_field.len()); loop { rng.read(k).unwrap(); let is_zero = k.iter().all(|&elt| elt == 0); let is_modulus = k.iter().zip(prime_field).all(|(&a, &b)| a == b); if is_zero == false && is_modulus == false { break; } } sw_k.copy_from_slice(k); let curve = match prime_field.len() { 24 => { x.copy_from_slice( p192::AffinePoint::GENERATOR .to_encoded_point(false) .x() .unwrap(), ); y.copy_from_slice( p192::AffinePoint::GENERATOR .to_encoded_point(false) .y() .unwrap(), ); &EllipticCurve::P192 } 32 => { x.copy_from_slice( p256::AffinePoint::GENERATOR .to_encoded_point(false) .x() .unwrap(), ); y.copy_from_slice( p256::AffinePoint::GENERATOR .to_encoded_point(false) .y() .unwrap(), ); &EllipticCurve::P256 } _ => unimplemented!(), }; let begin_time = SystemTimer::now(); match ecc.affine_point_verification_jacobian_multiplication(curve, k, x, y) { Err(Error::SizeMismatchCurve) => assert!(false, "Inputs data doesn't match the key length selected."), Err(Error::PointNotOnSelectedCurve) => assert!( false, "ECC failed while affine point verification + multiplication with x = {:02X?} and y = {:02X?}.", x, y, ), _ => {}, } let end_time = SystemTimer::now(); delta_time += end_time - begin_time; match prime_field.len() { 24 => { let sw_k = p192::Scalar::from( elliptic_curve::ScalarPrimitive::from_slice(sw_k).unwrap(), ); let q = p192::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); let modulus = DynResidueParams::new(&U192::from_be_slice(prime_field)); let x_affine = DynResidue::new(&U192::from_be_slice(q.x().unwrap().as_slice()), modulus); let y_affine = DynResidue::new(&U192::from_be_slice(q.y().unwrap().as_slice()), modulus); let z = DynResidue::new(&U192::from_be_slice(k), modulus); let x_jacobian = x_affine * z * z; let y_jacobian = y_affine * z * z * z; sw_x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); sw_y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); } 32 => { let sw_k = p256::Scalar::from( elliptic_curve::ScalarPrimitive::from_slice(sw_k).unwrap(), ); let q = p256::AffinePoint::GENERATOR .mul(sw_k) .to_affine() .to_encoded_point(false); let modulus = DynResidueParams::new(&U256::from_be_slice(prime_field)); let x_affine = DynResidue::new(&U256::from_be_slice(q.x().unwrap().as_slice()), modulus); let y_affine = DynResidue::new(&U256::from_be_slice(q.y().unwrap().as_slice()), modulus); let z = DynResidue::new(&U256::from_be_slice(k), modulus); let x_jacobian = x_affine * z * z; let y_jacobian = y_affine * z * z * z; sw_x.copy_from_slice(x_jacobian.retrieve().to_be_bytes().as_slice()); sw_y.copy_from_slice(y_jacobian.retrieve().to_be_bytes().as_slice()); } _ => unimplemented!(), }; for (a, b) in x.iter().zip(sw_x.iter()) { assert_eq!( a, b, "ECC failed during affine point verification + jacobian point multiplication.\nX = {:02X?}\nX = {:02X?}", x, sw_x, ); } for (a, b) in y.iter().zip(sw_y.iter()) { assert_eq!( a, b, "ECC failed during affine point verification + jacobian point multiplication.\nY = {:02X?}\nY = {:02X?}", y, sw_y, ); } } println!( "ok (it took {} cycles in average)", delta_time / (TEST_PARAMS_VECTOR.nb_loop_mul as u64) ); } }