* Create virtual peripherals for `ADC`/`DAC`
* Refactor the `analog::dac` module
* Refactor the `analog::adc` module
* Decouple the ADC driver from the `embedded-hal` traits
* Update `CHANGELOG.md`
* Seal the `AdcCalScheme` trait, reduce visibility of `AdcCalEfuse` trait
* Remove `APB_SARADC`/`SENS` peripherals from the `Peripherals` struct
* Provide ADC values in mV instead of requiring the user to scale them
* Changelog
* Try converting poly calibration also
* Update changelog and comments
* Fix example
* Unify the system peripheral
Whilst the PCR, SYSTEM and DPORT peripherals are different, we currently
use them all in the same way. This PR unifies the peripheral name in the
hal to `SYSTEM`. The idea is that they all do the same sort of thing, so
we can collect them under the same name, and later down the line we can
being to expose differences under an extended API.
The benifits to this are imo quite big, the examples now are all identical,
which makes things easier for esp-wifi, and paves a path towards the
multichip hal.
Why not do this in the PAC? Imo the pac should be as close to the
hardware as possible, and the HAL is where we should abstractions such
as this.
* changelog
* No longer publicly expose the `PeripheralClockControl` struct
* Update examples as needed to get things building again
* Update CHANGELOG.md
* Address review feedback, fix a warning
* Use a critical section for all devices other than the ESP32-C6/H2, as they modify multiple registers
* Rebase and update `etm` driver to fix build errors
* adc_cal: c2: Add efuse functions for reading calibration
* adc_cal: c3: Add efuse functions for reading calibration
* adc_cal: c6: Add efuse functions for reading calibration
* adc_cal: Add extra traits to support calibration
- `AdcCalScheme<ADCI>` implemented for each calibration scheme (basic, linear, curved)
- `AdcCalEfuse` implemented for each ADC unit to get calibration data from efuse bits
* adc_cal: Add basic ADC calibration scheme
Basic calibration is related to setting some initial bias value to ADC unit.
Such values usually is stored in efuse bit fields but also can be measured
in runtime by connecting ADC input to ground internally.
* adc_cal: Add line fitting ADC calibration scheme
This scheme also includes basic calibration and implements gain correction based
on reference point.
Reference point is a pair of reference voltage and corresponding mean raw ADC
value. Such raw values usually is stored in efuse bit fields for each supported
attenuation.
Possibly it also can be measured in runtime by connecting ADC to reference
voltage internally.
* adc_cal: Add curve fitting ADC calibration scheme
This scheme also includes basic and linear and implements final polynomial error
correction.
* adc_cal: riscv: Add ADC calibration implementation for riscv chips
* adc_cal: c2: Add calibrated ADC reading example
This example uses line fitting calibration scheme by default.
It periodically prints both raw measured value and computed millivolts.
* adc_cal: c3: Add calibrated ADC reading example
This example uses curve fitting calibration scheme by default.
It periodically prints both raw measured value and computed millivolts.
* adc_cal: c6: Add calibrated ADC reading example
This example uses curve fitting calibration scheme by default.
It periodically prints both raw measured value and computed millivolts.
* adc_cal: riscv: Add changelog entry for ADC calibration